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ABSTRACT: The aim of the proposed study is to develop a new hybrid method using the non-dyadic 
wavelets for the investigation of Bagley-Torvik Equation. Non-dyadic wavelets are used to estimate the 
solution by series approximation. To handle the fractional derivatives and integrals in the problem, Caputo 
sense definition of derivatives and Riemann-Liouville definitions of integrals are used. Numerical solution 
has been produced for five different fractional Bagley-Torvik Equations to establish the competency of the 
proposed method. 
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I. INTRODUCTION  

Fractional calculus is a branch of applied mathematics 
which emerges as a great tool in explaining the physical 
and chemical phenomenon with alienate kinetics having 
microscopic complex behavior. There are fractional 
differential models which have a non-differentiable but 
continuous solution such as Weierstrass type functions 
[1]. These kinds of characteristics are not possible to 
explain with the help of ordinary or partial differential 
models.  Earlier the field of fractional calculus was purely 
mathematical without any visible application but in these 
days, fractional calculus has gained a huge importance 
in the field of science and technology because of its 
application in the various field like theory of thermo-
elasticity [2], viscoelastic fluids [3], dynamics of 
earthquakes [4], fluid dynamics [5], etc . Bagley-Torvik 
equation is one of the most important fractional models 
in the field of viscoelastic fluids. In this model, Bagley 
and Torvik have studied the motion of rigid plate 
immersed into the Newtonian fluid. It is found in the 
experiment that retarding force is proportional to the 
fractional derivative of the displacement instead of the 
velocity. It has been observed during the experiment that 
fractional model is superior to the integer-order model for 
the prediction of characteristics of the same material. But 
general closed-form solution for fractional Bagley-Torvik 
equation has yet not been established. Therefore, many 
researchers are involved in developing the various 
numerical and semi-analytic schemes for investigating 
the different phenomena governed by the Bagley-Torvik 
equation such as Adomian decomposition method [6], 
Variational iteration method (VIM) [7], Homotopy 
analysis method[8], Generalized Taylor collocation 
method [9], Haar Wavelet Method (HWM) dilation factor 
2 [10], Fractional iteration method [11], Bessel 
collocation method [12], Chebyshev wavelet method 
[13], Fractional Taylor series Method [14], Hybrid 
functions approximation [15], Gegenbauer Wavelet 

Method [16], Reproducing kernel algorithm [17], Sumudu 
transformation method  [18] etc. 
But the study of characteristics of different materials 
governed by Bagley Torvik equations has yet not been 
investigated by non-dyadic wavelet-based technique. 
Wavelets are one of the modernistic orthonormal 
functions which have a capability of dilation and 
translation. Because of these properties, numerical 
techniques which involve wavelets bases are showing 
the qualitative improvement in contrast with other 
methods. In literature, dyadic wavelets are in 
preponderance. In 1995, Chui and Lian [19] has 
developed the non-dyadic wavelets by using the process 
of multiresolution analysis. In 2018, Mittal and Pandit 
have used the non-dyadic wavelets [20-22] for solving 
the various types of differential equations and found that 
these wavelet bases are equally competent in solving 
the various types of mathematical models governed by 
differential equations. Also, it was shown by them that 
the non-dyadic wavelet has a faster rate of convergence 
as compared to the dyadic wavelets. Moreover, 
investigation of characteristics of the solution to the 
Bagley Torvik equation has yet not been done by non-
dyadic wavelet methods.  This encourages us to develop 
a new technique using non-dyadic wavelet for analyzing 
the behavior of systems governed by the Bagley Torvik 
equation.  
The prime purpose of proposed work is to establish a 
new computational technique for obtaining the solution 
of following types of Bagley Torvik equations emerging 
in the field of fluid dynamics using non-dyadic wavelet 
bases. 
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The manuscript follows the sequence of sections as 
described:  In section II, the basic definitions of fractional 
calculus are given. In section III, explicit forms of non-
dyadic parent wavelets with their families and procedure 
to find their integrals have been explained briefly. 
Representation of the solution using non-dyadic 
wavelets is explained in section IV. Section V explains 
the method of solution using non-dyadic wavelets. In 
section VI, argument for the convergence of the 
technique is given. In section VII, solutions of five 
different examples of Bagley Torvik equations are 
produced using the present method to analyze the 
efficiency and performance of the present method. In 
section VII, the conclusion drawn from the results and in 
future research idea is given. 

II. SOME BASIC DEFINITIONS OF FRACTIONAL 
CALCULUS 

A. Mittag-Leffler function  
It is an extension of exponential function which has a 
huge importance in the field of fractional calculus. It has 
two forms of expression as given below  

i. One Parameter Mittag-Leffler Function [23] for 

a set of complex numbers and any positive real 

no �  is defined as  +, = ∑ ./0	,12(� , � >  0, �4ℝ 617% , 8 ∈ ℂ           (2) 

ii. Two-Parameter Mittag-Leffler Function [23] for 

a set of complex numbers and for positive real 

no’s � , 
  is defined as  +,,; = ∑ </0	,12;� , � , 
 > 0, �, 
4ℝ, 8 ∈ ℂ 617%   (3) 

B. Riemann-Liouville fractional integral operator [23] 
The fractional integral operator defined by the 
mathematician Riemann-Liouville for the positive real 
nos. � , =, 
  over the interval [a, b]  is given by  >?@ A,B	
� = (0	,� C B	8�	
 − 8�,E(F8 GA                      (4) 

where � denotes the order of derivative and 
4H=, IJ. 
C. Riemann-Liouville fractional differential operator [23] 
The fractional differential operator defined by the 
mathematician Riemann-Liouville for the positive real 
nos. � , =, 
  over the interval H=, IJ is given by  �?@ A,B	
� =
K (0	1E,�  L/LG/ C M	.�	GE.�NO/P� F8  , Q − 1 < � < Q ∈ ℕGAL/LG/ B	
�                                   ,                     � = Q ∈ ℕ*       (5) 

where � denotes the order of derivative and 
4H=, IJ. 
D. Caputo fractional differential operator [23] 
The fractional differential operator defined by the Italian 
mathematician Caputo for the positive real nos. � , =, 
 is  

�T A,B	
� = K (0	1E,� C M/	.�	GE.�NO/P� F8  , Q − 1 < � < Q ∈ ℕGAL/LG/ B	
�                                   ,             � = Q ∈ ℕ*  
(6) 

 where � denotes the order of derivative and 
4H=, IJ. 

III. INTEGRALS OF NON-DYADIC HAAR WAVELET 

The explicit expressions for  Haar  function the father 
wavelet, symmetric and antisymmetric mother wavelets 
for non-dyadic wavelet family with dilation factor  three  
[19, 22]  are given below  

Haar scaling function  U	
�     =    V1         0 ≤ 
 < 10      elsewhere *       (7)  

Haar symmetric wavelet function  

 Z(	
�   =   (√� ���
��  

−1           0 ≤ 
 < ()2           () ≤ 
 < �)  −1           �) ≤ 
 < 1      0           elsewhere
*                           (8) 

Haar antisymmetric wavelet function 

  Z�	
�  =   ])� ���
�� 1           0 ≤ 
 < ()0           () ≤ 
 < �) −1           �) ≤ 
 < 1      0           elsewhere

*               (9)  

The main difference which makes the non-dyadic 
wavelets better than the dyadic wavelets is that only one 
mother wavelet is responsible for the construction of 
whole wavelet family but in case of non-dyadic wavelets, 
two mother wavelets with different shapes are 
responsible for the construction of the whole family. 
Because of this fact, non-dyadic wavelets increase the 
convergence rate of the solution.  Wavelets represented 
by Eqn. (8, 9) are the mother wavelets which generate 
the whole non-dyadic wavelet family. A multi-resolution 
analysis is used to get the whole non-dyadic Haar 
wavelet family as described below. 

A. Multi-resolution analysis  
Multi-resolution analysis for space  ^�	_� is defined as a 

sequence of closed subspace  à , ba ⊂ ^�	_�, d ∈ ℤ  

which has the properties as given below  =� f	
� ∈ b%   ⟹ fh3a
j ∈ ba  I� f	
� ∈ b%    ⟹ Uh3a
 − kj ∈ ba  l� Zm	
� ∈ %̀m  , n = 1,2  ⟹ Zmh3a
j ∈ àm 
F� Zm	
� ∈ %̀m  , n = 1,2 ⟹ Zmh3a
 − kj ∈ àm 
o� p̀ = à(⨁ à� = ⨁ àm   , n = 1,2 

B� ⋯ ⊂ b% ⊂ b( ⊂ b� ⊂ b) ⊂ bs ⊂ ⋯ �� ⋯ ⊥ %̀ ⊥ (̀ ⊥ �̀ ⊥ )̀ ⊥ s̀ ⊥ ⋯ 

ℎ� ba = b%   + v à(aE(
m7% +  v à�aE(

m7%  

n� f	
� ∈ b% implies f	t − k� ∈ b%; k ∈ ℤ and it forms 
Riesz basis in b%  
Now by applying MRA, generalized form of non-dyadic 
Haar wavelet family is obtained as follows: 
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 ℎm	
� = U	
� = V1         0 ≤ 
 < 10      elsewhere *  for n = 1 

ℎm	
� = Z(h3a
 − kj = 1√2 {  −1         �(	n� ≤ 
 < ��	n�   2         ��	n� ≤ 
 < �)	n�−1         �)	n� ≤ 
 < �s	n�0                 elsewhere
* 

for  n = 2,4, … 3� − 1               (10) 

 ℎm	
� = Z�h3a
 − kj = �32 {   1           �(	n� ≤ 
 < ��	n�   0           ��	n� ≤ 
 < �)	n�−1           �)	n� ≤ 
 < �s	n�0                    elsewhere
* 

for       n = 3, 6, … 3�                  (11)        
 

where �(	n� = ��,��	n� =  )�2()� , �)	n� = 	)�2��)� ,  �s	n� =
�2(� , � = 3a ,  d = 0,1,2, … , k = 0,1,2, … , � − 1.  

Here  n , d , k  respectively represent the wavelet number, 
level of resolution (dilation) and translation parameters of 
wavelets family. The values of  n 	for n > 1� can be 
calculated with the help of  d , k   by using the following 

relations  � n − 1 = 3a + 2k      for even n n − 2 = 3a + 2k     for  odd  n �. By using this 

relation for different dilation and translations of  ℎ�	
�,  ℎ)	
�, we will get the wavelet family as  ℎ(	
�, ℎ�	
�, ℎ)	
�, ℎs	
�,  ℎ�	
�, ℎ� 	
�, … where ℎ�	
� and ℎ)	
� are also called mother wavelets and rest all the 
wavelets which we have obtained from mother wavelet 
are called daughter wavelets. 
Now one can easily integrate Eqn. (7, 11) desired 
number of times over the interval [A, B) by using 
Riemann Liouville Integral formula as given below �,,m	
� = (0	,� C  ℎm	��	
 − ��,E(F�G�  ; 

0 ≤ � ≤ Q , Q = 1, 2, 3 …  , n = 1, 2, 3, … 3�             (12) 

After evaluating the above integrals, we get �;,m	
���   B��    n = 2, 4, 6, 8, ⋯ , 3� − 1  are given below     

{for      0 ≤  
 ≤ �(	n�       �;,m	
� = 0       for   �(	n� ≤ 
 ≤ ��	n� �;,m	
� = 1√2 −1Γ	
 + 1� h
 − �(	n�j;    for    ��	n� ≤ 
 ≤ �)	n� �;,m	
� = 1√2 1Γ	
 + 1� H−h
 − �(	n�j; + 3h
 − ��	n�j;J    B��   �)	n� ≤ 
 ≤ �s	n� �;,m	
� = 1√2 1Γ	
 + 1� H−h
 − �(	n�j; + 3h
 − ��	n�j;
− 3h
 − �)	n�j;J   for �s	n� ≤ 
 ≤ 1  �;,m	
� = (√�  

(0	;2(� H−h
 − �(	n�j; + 3h
 − ��	n�j; −3h
 − �)	n�j; + h
 − �s	n�j;J }                                    (13)  �;,m	
���   for    n = 3, 5, 7, 9, ⋯ , 3�  are given by  

{for      0 ≤  
 ≤ �(	n�       �;,m	
� = 0       for   �(	n� ≤ 
 ≤ ��	n� 

�;,m	
� = �32  1Γ	
 + 1� h
 − �(	n�j;
 

 for    ��	n� ≤ 
 ≤ �)	n� 

�;,m	
� = �32 1Γ	
 + 1� Hh
 − �(	n�j; − h
 − ��	n�j;J   for   �)	n� ≤ 
 ≤ �s	n� 
�;,m	
� = �32 1Γ	
 + 1� Hh
 − �(	n�j; − h
 − ��	n�j;

− h
 − �)	n�j;J for �s	n� ≤ 
 ≤ 1  
�;,m	
� = ])�  

(0	;2(� Hh
 − �(	n�j; − h
 − ��	n�j; −h
 − �)	n�j; + h
 − �s	n�j;J  }                                     (14) 

�;,m	
� = G�0	;2(� B��   n = 1                     (15) 

 

Fig. 1. Non-dyadic Haar wavelets.   

 
Fig. 2. First integral of wavelets. 
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IV. APPROXIMATION OF SOLUTION 

Using properties of non-dyadic wavelets as explained in 
section III, any function �	
� ∈ ^�	_� can be expressed 
as �	
� = ∑ =mℎm	
�6m7% =  =(ℎ(	
� + ∑ =mZ(h3a
 − kj +���� m∑ =mZ�h3a
 − kj��� m�(                                                  (16) 

Here =m′� are the wavelet coefficients whose values are 
to be determined by the proposed method. But for the 
computational purpose, one can consider a finite number 
of terms. By considering the first 3� terms to 
approximate the function   �	
� we get  

�	
� ≈ �)� = v =mℎm	
�)�
m7%  

where                     � = 3a, d = 0, 1, 2, …                   (17)                                                         

V. METHOD OF SOLUTION BASED ON NON-DYADIC 
HAAR WAVELETS 

Consider the Bagley Torvik equation  

����	
� + 
����	
� + �����	
� + $�	
� = �	
�            (18) 

with initial conditions �	0� = $� , ��	0� = $),and � , 
, �, $ 
are the arbitrary constants.  
Now the solution x(t) for the above equation can be 
obtained using the following steps 
Step 1: Approximate the highest order derivative present 
in the equation (18) (i.e. ���	
�� using the non-dyadic 
wavelet bases as ���	
� = ∑ =mℎm	
� =)�m7% =  =(ℎ(	
� + ∑ =mZ(h3a
 −���� mk� + ∑ =mZ�h3a
 − kj��� m�(                                          (19) 

where =m�� for I = 0, 1, 2…,3p are the nondyadic wavelet 
coefficients  

Step 2: By integrating the equation (19) within the limits 
0 to t, we get ��	
� = ∑ =m�(,m	
� +)�m7% ��	0� = ∑ =m�(,m	
� +)�m7% $)      (20) 

Again, integrating the equation (20) within the limits 0 to 
t, we get �	
� = ∑ =m��,m	
� +)�m7% $)
 + �	0� = ∑ =m��,m	
� +)�m7% $)
 +$�                                                                             (21)     

Step 3: Differentiate the Eqn. (21) using Caputo 
definition of fractional derivatives we get 

           ����	
� = ∑ =m���,m	
� + 2)�m7% $)]G�       

          ����	
� = ∑ =m���,m	
� +)�m7% $) (√�G                            (22) 

Step 4: Using Eqns. (19-22), Eqn. (18) becomes  

� ∑ =mℎm	
�)�m7% + 
  ∑ =m���,m	
� +)�m7% $) (√�G¡ +
� ¢∑ =m���,m	
� + 2)�m7% $)]G�  £ + $H∑ =m��,m	
� +)�m7% $)
 +$� J = �	
�  

After simplification, we get ∑ =mH�ℎm	
� + 
���,m	
� + � ���,m	
� +  $��,m	
�J)�m7% = �	
� −
¢
$) (√�G + 2�$)]G� + $	$)
 + $�� £                               (23) 

Step 4: After Discretizing the Eqn. (23) using the 
collocation points we get the following matrix system =¤ = ¥                                  (24)  
Then using the Thomas algorithm, we obtained the 
wavelet coefficients =m′�. Then by substituting the values 
of wavelet coefficients =m′� in Eqn. (21), We get the non-
dyadic wavelet-based solution of Bagley Torvik 
equations with the given initial conditions. Similarly, by 
using the above steps we find the solution of Bagley 
Torvik equations with the given boundary conditions. 

VI.  CONVERGENCE ANALYSIS 

It has been proved by Mittal and Pandit [24]  that if  �	
� 4^�	_�  such that  |�1	
�| ≤ §, ∀ 
4	0,1�  where  M 
is any real constant and x(t) is approximated by Non-
dyadic (Scale 3) Haar wavelet family as given below:  �)�	
� = ∑ =mℎm	
�)�m7%                                          (25) 

Then the error bound for the solution  �	
� using ^�-norm 
is calculated as  

©�	
� − �)�	
�© ≤  ª�)«�	1E,� ¬ ­� h0	1E,2(�j� ª)O�	®P��	/ONP��(E)O�	/ON�P� «  

(26) 
Clearly, the error bound is inversely proportional to the 
level of resolution which ensures the convergence of the 
approximated solution to exact solution with the increase 
in the level of resolution j. Moreover, if we know the 
exact values of Q, � and M, then the maximum value of 
error bound can also be calculated. 

VII. ERROR ANALYSIS BY NUMERICAL 
EXPERIMENTS 

To describe the appropriateness of the proposed 
technique for the Bagley Torvik equation of fractional 
order, solutions of five different problems obtained by the 
proposed computational technique have been analyzed 
and absolute errors are calculated to check the 
efficiency of the present scheme with the help of 
following formulas 
Absolute error =|��¯°±²	
³� − ��´µ	
³�|                      (27) 
where  
³ represents the collocation points of the 
domain. 

Numerical Experiment No. 1:  ��� + ���� + � = 
� +4]G� + 2  under the following boundary constraints                                 �	0� = 0, �	1� = 1                                                     (28) 
Exact solution of the problem is �	
� = 
� 
After applying the method of solution discussed in 
section 5 the following solution is proposed  �	
� = ∑ =mH��,m	
� − 
��,m	1�J + 
)�m7(                             (29) =m′� are the wavelets coefficients which will be obtained 
by the following procedure and �a,m′� are the wavelets 

integrals which have been already calculated in section 
3. 
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After applying the proposed scheme on the experiment 
1. Eqn. (28) is reduced to the following system  ∑ =m ¢√¶
 ·ℎm	
� + ���,m	
� + ��,m	
�¸ − ª√¶
�� +)�m7%
1j��,m	1�£ = 4
 + 1 + √¶ ¹
º� − 
�� + 2
��»                      (30) 

After Discretizing the Eqn. (30) using the collocation 
points we get the following matrix system 
                         =¤ = ¥   (31)

Table 1: Comparision of results achieved with other methods in the existing literature for Experiment No.1 

¼ 
Exact 

Solution 
Approximated 

Solution 

Present Method(E*) 

 
RKA(E*)[17] VIM(E*)[7] HAM(E*)[8] 

0.1 0.01 
0.010000000000000
006938893903907 

6.93889390390723e-18 0 0.5487432e−4 2.3265e-13 

0.2 0.04 
0.040000000000000
000000000000000 

0 0 0.6312556e−3 1.4385e-11 

0.3 0.09 
0.090000000000000
000000000000000 

0 0 0.2665571e−2 6.1890e-11 

0.4 0.16 
0.160000000000000
027755575615628 

2.77555756156289e-17 0 0.7480121e−2 2.2736e-11 

0.5 0.25 
0.250000000000000
000000000000000 

0 2.77555756156289e-17 0.1679592e−1 1.3680e-10 

0.6 0.36 
0.360000000000000
000000000000000 

0 5.55111512312578e-17 0.3277307e−1 3.5678e-11 

0.7 0.49 
0.490000000000000
055511151231257 

5.55111512312578e-17 5.55111512312578e-17 0.5806535e−1 2.6188e-10 

0.8 0.64 
0.640000000000000
000000000000000 

0 1.11022302545678e-17 0.9588508e−1 4.3416e-10 

0.9 0.81 
0.810000000000000
000000000000000 

0 1.11022302545678e-17 0.1500768448 1.0816e-10 

E* (Absolute Error) 

 

 
Fig. 1. Comparison of exact and numerical solution of 

Numerical experiment No.1 at the level of resolution J=2. 

After solving the above matrix system, we get the values 
of  =m′� which will be used to find out the solution. 
Results achieved by the proposed technique are 
conferred by the graphs and tables for the better visibility  
of accuracy. 
 
 

Fig. 3 and Table 1 demonstrate the clearly visible 
agreement in the exact and approximated solutions. In 
Table 1, results achieved by the present technique are 
compared with other method existing in the recent 
literature and found it outperform over others methods 
like Variational Iteration Method (VIM) [7], Homotopy 
asymptotic method (HAM) [8], Reproducing Kernel 
Analysis  (RKA) [17],  which demonstrates the 
superiority and reliability of the method. 

 
Fig. 2. Absolute error at the different collocation points 

considered for the solution of Numerical experiment 
No.1. 
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Numerical Experiment No. 2: ���	
� + 0.5 ����	
� + �	
� = 3 + 
� ª (0	�.�� 
E%.� + 1«  w.r.t 

B. C’s    �	0� = 0 , �	1� = 2                                         (32) 
 
Exact solution of the problem is  �	
� = 
� + 1.  
After applying the method of solution discussed in 
section 5 the following solution is proposed  �	
� = ∑ =mH��,m	
� − 
��,m	1�J + 
)�m7( + 1               (33) =m′� are the wavelets coefficients which will be obtained 
by the following procedure and �a,m′� are the wavelets 

integrals which have been already calculated in section 

3. After applying the proposed technique on the 
experiment no. 2. Eqn. (32) is reduced to the following 
system 

∑ =m ¢·ℎm	
� + (� ���,m	
� + ��,m	
�¸ − · G��√� + 
¸ ��,m	1�£)�m7% =

� − 
 + 2 + ¹ s)√� 
�� − (√� 
��»                                          (34) 

After Discretizing the Eqn. (34) using the collocation 
points we get the following matrix system         =¤ = ¥  

Table 2: Comparision of results achieved with other methods in the existing literature for Experiment No. 2. 

¼ Exact Solution Approximated Solution Present Method(E
*
) RKA(E

*
) [17] 

0.1 1.01 1.01000000000000000000 0 1.932676241e-12 

0.2 1.04 1.04000000000000000000 0 3.161981788e-11 

0.3 1.09 1.09000000000000000000 0 3.679907490e-10 

0.4 1.16 1.16000000000000000000 0 3.661697390e-09 

0.5 1.25 1.25000000000000000000 0 3.300057339e-09 

0.6 1.36 1.36000000000000000000 0 2.745960126e-09 

0.7 1.49 1.49000000000000022204 2.22044604925031e-16 2.096272045e-10 

0.8 1.64 1.64000000000000000000 0 1.404942829e-11 

0.9 1.81 1.81000000000000000000 0 7.004619107e-12 

E* (Absolute Error) 

 
After solving the above matrix system, we get the vales 
of  =m′� which will be used to find out the solution. It can 
be observed from the Table 2 and Fig. 5, that the results 
achieved by the proposed method agree well with exact 
solution, which demostrate the high efficiency of the 
proposed technique to solve these kinds of problems.  

 
Fig. 5. Comparison of exact and numerical solution of 
numerical experiment No. 2 at the level of resolution 

J=2. 
 

From Table 2, one can say that the proposed technique 
is a strong solver in terms of better accuracy as compare 
to other method [17] given in the Table 2. Fig. 6 is 
showing the errors at the different colocation points. 

 

Fig. 3. Absolute error at the different collocation points 
considered for the solution of Numerical experiment 

No.2. 

 
 

x
(t

)
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Numerical Experiment No. 3:  ���	
� + ����	
� +�	
� = 2 + 
� ª �0	�.�� 
E%.� + 1« − 
 ª (0	(.�� 
E%.� + 1«  
subjected to the boundary condition �	0� = 0 , �	1� = 0                 
                                                                            (35) 
Exact solution of the problem is  �	
� = 
� − 
 
After applying the method of solution discussed in the 
section 5 the following solution is obtained by the 
proposed method                       �	
� = ∑ =mH��,m	
� − 
��,m	1�J)�m7(                  (36) =m′� are the wavelets coefficients which will be obtained 
by the procedure discussed above and �a,m′� are the 

wavelets integrals which has been already calculated in 
section 3. 
Table 3 depicting the performance of the method in 
contrast with other method existing in the recent 
literature. It validates the high efficiency and 
performance of the method. Getting high accuracy for a 
small number of grid points makes it strong solver for 
these kinds of mathematical models. Fig. 7 
demonstrates that the results achieved with the 
proposed technique agree well with exact solution and 
Fig. 8 explains the errors in the solution at the different 
collocation points. 

 
Fig. 4. Comparison of exact and numerical solution of 
Numerical experiment No. 3 at the level of resolution 

J=2. 

 
Fig. 5. Absolute error at the different collocation points 

considered for the solution of Numerical experiment 
No. 3. 

Numerical Experiment No. 4: 

���	
� + ����	
� + �	
� = 
 + (√�G + 1  subjected to the 

boundary condition �	0� = 0,  ��	1� = 1                      (37)   
Analytic solution of the problem is  �	
� = 
 + 1 
By using the method of solution discussed in the section 
3, we proposed the following solution for the above 
equations   

                   �	
� = ∑ =m��,m	
�)�m7( + 
 + 1                     (38) =m′� are the wavelets coefficients which will be obtained 
by the procedure discussed above and �a,m′� are the 

wavelets integrals which has been already calculated in 
section 3. It is shown in Table 4 and  Fig. 10 that results 
achived with the proposed tecnique exactly mathcing  
with exact solution with no error. It is also shown in the 
Table 4  that   the results achived with the proposed 
tecnique are superior than the results obtained by the 
other methods availabe in the existing litrature explains 
the high level of agreement bethween the exact and 
approximated solution. 

 
Fig. 6. Comparison of exact and numerical solution of 
Numerical experiment No. 4 at the level of resolution 

J=2. 

 
Fig. 7. Absolute error at the different collocation points 

considered for the solution of Numerical experiment 
No. 4. 

 

x
(t

)
y

E
xa

c
t(t

) 
--

  
y

A
p
p
ro

xi
m

a
te

d
(t

)

x
(t

)
y

E
x
a
c
t(t

) 
--

  
y

A
p
p
ro

x
im

a
te

d
(t

)



Kaur et al., International Journal on Emerging Technologies 10(2b): 1-14(2019)                                                           8 

 

Numerical Experiment No. 5: 
 ����	
� + �	
� = 
� − 
s + (�¬¾√� 
¿� − �s�√� 
º�  subjected to the 

boundary condition �	0� = 0 , �	1� = 0                       (39) 
 

Exact solution for the problem is  �	
� = 
� − 
s 

Using the method of solution explained in section no. 3, 

Following solution is proposed for the numerical 

experiment no. 5  

  �	
� = ∑ =mH��,m	
� − 
��,m	1�J)�m7(                  (40) =m′� are the wavelets coefficients which will be obtained 
by the procedure discussed above and �a,m′� are the 

wavelets integrals which has been already calculated in 
section 3 

 

Table 3: Comparision of  results achived with other methods in the existing t literature for Experiment No. 3. 

¼ Exact Solution Approximated Solution Present Method (E
*
) RKA(E

*
) [17] 

0.1 
-

0.090000000000000 
-

0.090000000000000000000000000000 
0 4.178019042e-12 

0.2 
-

0.160000000000000 
-

0.160000000000000027755575615629 

-
2.77555756156289e-

17 
6.892891813e-11 

0.3 
-

0.210000000000000 
-

0.210000000000000055511151231258 
5.55111512312578e-

17 
8.052572498e-10 

0.4 
-

0.240000000000000 
-

0.240000000000000055511151231258 
5.55111512312578e-

17 
8.010652391e-09 

0.5 
-

0.250000000000000 
-

0.250000000000000055511151231258 
5.55111512312578e-

17 
7.193844853e-09 

0.6 
-

0.240000000000000 
-

0.240000000000000055511151231258 
5.55111512312578e-

17 
5.949374826e-09 

0.7 
-

0.210000000000000 
-

0.210000000000000055511151231258 
5.55111512312578e-

17 
4.504783491e-10 

0.8 
-

0.160000000000000 
-

0.160000000000000027755575615629 
2.77555756156289e-

17 
2.989430925e-11 

0.9 
-

0.090000000000000 
-

0.090000000000000027755575615629 
2.77555756156289e-

17 
1.473612898e-12 

E
*
 (Absolute Error) 

Table 4: Comparision of  results achived with other methods in the existing literature for Experiment No. 4. 

¼ 
Exact 

Solution 
Approximated 

Solution 
Present Method 

(E
*
) 

RKA(E
*
) [17] BCM(E

*
) [12] 

0.1 1.1 1.1 0 
0 9.3742e-16 

0.2 1.2 1.2 0 
0 3.9634e-15 

0.3 1.3 1.3 0 
0 4.2834e-15 
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0.4 1.4 1.4 0 
0 3.2975e-15 

 

0.5 1.5 1.5 0 
0 2.0455e-15 

0.6 1.6 1.6 0 
2.220446049E-16 1.0277e-15 

0.7 1.7 1.7 0 
0 3.4773e-16 

0.8 1.8 1.8 0 
0 6.9289e-17 

0.9 1.9 1.9 0 
2.220446049E-16 2.3947e-16 

E
*
 (Absolute Error) 

 

Fig. 8. Comparison of exact and numerical solution of 
Numerical experiment No. 5 at the level of resolution 

J=2. 

 

Fig. 9. Absolute error at the different collocation points in 
Numerical experiment No. 5. 

VIII. CONCLUSION 

After looking at the results of five numerical experiments 
performed with proposed technique, we infer that 
Bagley-Torvik equation of fractional order can easily be 
solved by the proposed scheme with less computational 
cost and high accuracy. For example, in numerical 
experiment no. 1 level of accuracy obtained is or order 10E(¾ for only 9 colocation points in the first iteration. 
Moreover, the use of common MATLAB subprograms to 
solve various types of fractions equations, makes it more 

computer friendly. Very good accuracy is obtained for a 
very small number of collocation points and the results 
achieved are better than or at par with the other methods 
existing in the recent literature. It makes the proposed 
scheme a strong solver for these kinds of fractional 
differential equations. Therefore, by looking at the 
performance of the method, we conclude that the given 
method can be extended to solve other set of fractional 
differential equations. All the calculations have been 
performed using the MATLAB 7. 

Table 5: Comparison of  results achived by the proposed method with the exact solution for experiment 
No. 5. ¼ Exact Solution Approximated Solution Present Method (E

*
) 

0.00617284 -1.4429480000E-09 4.9171205846E-05 4.92E-05 

0.01851852 -1.1542691000E-07 6.7922819931E-05 6.80E-05 

0.0308642 -8.7943672400E-07 8.3907873324E-05 8.48E-05 

0.04320988 -3.3354066130E-06 9.5100857199E-05 9.84E-05 

0.05555556 -8.9967653980E-06 1.0151360079E-04 1.11E-04 

0.06790123 -1.9814020830E-05 1.0157260482E-04 1.21E-04 

x
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0.08024691 -3.8140343926E-05 9.3243967138E-05 1.31E-04 

0.09259259 -6.6697153309E-05 7.3993891171E-05 1.41E-04 

0.10493827 -1.0853969954E-04 4.0900842117E-05 1.49E-04 

0.11728395 -1.6702264946E-04 -9.2943502120E-06 1.58E-04 

0.12962963 -2.4576567051E-04 -8.0140150666E-05 1.66E-04 

0.14197531 -3.4861901510E-04 -1.7543265253E-04 1.73E-04 

0.15432099 -4.7962910491E-04 -2.9917635750E-04 1.80E-04 

0.16666667 -6.4300411523E-04 -4.5554663647E-04 1.87E-04 

0.17901235 -8.4307955932E-04 -6.4885316645E-04 1.94E-04 

0.19135802 -1.0842838727E-03 -8.8350400114E-04 2.01E-04 

0.2037037 -1.3711039977E-03 -1.1639700577E-03 2.07E-04 

0.21604938 -1.7080509673E-03 -1.4947498869E-03 2.13E-04 

0.22839506 -2.0996254899E-03 -1.8803346416E-03 2.19E-04 

0.24074074 -2.5502835338E-03 -2.3251731862E-03 2.25E-04 

0.25308642 -3.0644019109E-03 -2.8336373097E-03 2.31E-04 

0.2654321 -3.6462438616E-03 -3.4099870140E-03 2.36E-04 

0.27777778 -4.2999246389E-03 -4.0583358614E-03 2.42E-04 

0.29012346 -5.0293770928E-03 -4.7826163651E-03 2.47E-04 

0.30246914 -5.8383172545E-03 -5.5865454139E-03 2.52E-04 

0.31481481 -6.7302099212E-03 -6.4735897242E-03 2.57E-04 

0.32716049 -7.7082342397E-03 -7.4469313129E-03 2.61E-04 

0.33950617 -8.7752492913E-03 -8.5094329872E-03 2.66E-04 

0.35185185 -9.9337596759E-03 -9.6636038485E-03 2.70E-04 

0.36419753 -1.1185881097E-02 -1.0911564807E-02 2.74E-04 

0.37654321 -1.2533305943E-02 -1.2255014107E-02 2.78E-04 

0.38888889 -1.3977268878E-02 -1.3695192856E-02 2.82E-04 

0.40123457 -1.5518512420E-02 -1.5232850567E-02 2.86E-04 

0.41358025 -1.7157252525E-02 -1.6868210697E-02 2.89E-04 

0.42592593 -1.8893144178E-02 -1.8600936200E-02 2.92E-04 

0.4382716 -2.0725246971E-02 -2.0430095076E-02 2.95E-04 

0.45061728 -2.2651990688E-02 -2.2354125925E-02 2.98E-04 

0.46296296 -2.4671140892E-02 -2.4370803509E-02 3.00E-04 

0.47530864 -2.6779764510E-02 -2.6477204310E-02 3.03E-04 

0.48765432 -2.8974195412E-02 -2.8669672090E-02 3.05E-04 

0.5 -3.1250000000E-02 -3.0943783462E-02 3.06E-04 

0.51234568 -3.3601942792E-02 -3.3294313448E-02 3.08E-04 

0.52469136 -3.6023952003E-02 -3.5715201053E-02 3.09E-04 

0.53703704 -3.8509085134E-02 -3.8199514831E-02 3.10E-04 

0.54938272 -4.1049494554E-02 -4.0739418453E-02 3.10E-04 

0.5617284 -4.3636393083E-02 -4.3326136283E-02 3.10E-04 

0.57407407 -4.6260019578E-02 -4.5949918942E-02 3.10E-04 

0.58641975 -4.8909604518E-02 -4.8600008887E-02 3.10E-04 

0.59876543 -5.1573335587E-02 -5.1264605982E-02 3.09E-04 

0.61111111 -5.4238323257E-02 -5.3930833072E-02 3.07E-04 

0.62345679 -5.6890566377E-02 -5.6584701554E-02 3.06E-04 

0.63580247 -5.9514917752E-02 -5.9211076957E-02 3.04E-04 
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0.64814815 -6.2095049731E-02 -6.1793644516E-02 3.01E-04 

0.66049383 -6.4613419790E-02 -6.4314874745E-02 2.99E-04 

0.67283951 -6.7051236116E-02 -6.6755989015E-02 2.95E-04 

0.68518519 -6.9388423191E-02 -6.9096925131E-02 2.91E-04 

0.69753086 -7.1603587380E-02 -7.1316302911E-02 2.87E-04 

0.70987654 -7.3673982508E-02 -7.3391389755E-02 2.83E-04 

0.72222222 -7.5575475453E-02 -7.5298066235E-02 2.77E-04 

0.7345679 -7.7282511722E-02 -7.7010791659E-02 2.72E-04 

0.74691358 -7.8768081044E-02 -7.8502569662E-02 2.66E-04 

0.75925926 -8.0003682946E-02 -7.9744913774E-02 2.59E-04 

0.77160494 -8.0959292343E-02 -8.0707813004E-02 2.51E-04 

0.78395062 -8.1603325119E-02 -8.1359697417E-02 2.44E-04 

0.7962963 -8.1902603714E-02 -8.1667403713E-02 2.35E-04 

0.80864198 -8.1822322707E-02 -8.1596140806E-02 2.26E-04 

0.82098765 -8.1326014400E-02 -8.1109455403E-02 2.17E-04 

0.83333333 -8.0375514403E-02 -8.0169197584E-02 2.06E-04 

0.84567901 -7.8930927218E-02 -7.8735486380E-02 1.95E-04 

0.85802469 -7.6950591824E-02 -7.6766675354E-02 1.84E-04 

0.87037037 -7.4391047259E-02 -7.4219318181E-02 1.72E-04 

0.88271605 -7.1206998208E-02 -7.1048134226E-02 1.59E-04 

0.89506173 -6.7351280585E-02 -6.7205974126E-02 1.45E-04 

0.90740741 -6.2774827117E-02 -6.2643785369E-02 1.31E-04 

0.91975309 -5.7426632931E-02 -5.7310577875E-02 1.16E-04 

0.93209877 -5.1253721134E-02 -5.1153389575E-02 1.00E-04 

0.94444444 -4.4201108401E-02 -4.4117251993E-02 8.39E-05 

0.95679012 -3.6211770559E-02 -3.6145155825E-02 6.66E-05 

0.9691358 -2.7226608169E-02 -2.7178016522E-02 4.86E-05 

0.98148148 -1.7184412112E-02 -1.7154639868E-02 2.98E-05 

0.99382716 -6.0218291745E-03 -6.0116875623E-03 1.01E-05 

E
*
 (Absolute Error) 
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Program for Example -1 

clc; close all;format long 
 
A=input('Enter the lower limit of support of Haar function -->'); 
 
B=input('Enter the Upper limit of support of Haar function -->'); 
 
J=input('Enter the Maximum level of resolution for Haar function -->'); 
 
M=3^J;M2=3*M;M3=3*M2;dX=(B-A)/(M2*1.0); 
 
xbar=zeros(M2+1,1);x=zeros(M2,1);  
 
h=zeros(M2,M2);R=zeros(M2,M2,M2);S=zeros(M2,M2,20);H=zeros(M2,M2);Z=zeros(1,M2);z=zeros(1,M2); 
 
f=zeros(1,M2);Z1=zeros(1,M2);z1=zeros(1,M2);y1=zeros(1,M2); y=zeros(1,M2);G=zeros(M2,1); 
 
%x(1)=0.1; 
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for l=2:M2+1 
 
%x(l)=x(l-1)+0.1; 
 
xbar(l)=A+(l-1)*dX; 
 
if (l>1) 
         x(l)=0.5*(xbar(l-1)+xbar(l)); 
end 
end 
for l=1:M2 
 
   x(l)=x(l+1);   
  
if((x(l)>=A)&&(x(l)<=B)) 
 
        f(l)=sqrt(pi)*((x(l)^(5/2))-(x(l)^(3/2))+2*(x(l)^(1/2)))+4*x(l)-1; 
end 
end 
 
x(M2+1)=[]; 
 
for l=1:M2 
fori=1:M2 
 
 H(i,l)=sqrt(pi*x(l))*(h(i,l)+R(i,l,5)+R(i,l,20))-   (sqrt(pi)*(x(l)^(3/2)))+1)*S(i,1,20); 
 
end 
end 
 
c=f/H; 
 
for l=1:M2 
 
        y(l)=0; 
 
fori=1:M2 
 
        y(l)=y(l)+(c(i)*(R(i,l,20)-x(l)*S(i,1,20))); 
 
end 
    y(l)=y(l)+x(l); 
 
   y1(l)=x(l)^2; 
end 
 
figure(1) 
 
plot(x,y,'-o') 
 
hold on 
 
plot(x,y1,'-*r') 
 
title(['Numerical Experiment No.1'],'Fontsize',20) 
 
xlabel(['t'],'Fontsize',20)% x-axis label 
 
ylabel(['x(t)'],'Fontsize',20) % y-axis label 
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legend({'Exact Solution','Numericalsolution'},'Location','Southwest','FontSize',20) 
 
hold off 
 
figure(2) 
 
sum=0;sum1=0; 
 
for l=1:M2 
 
   Z(l)=(abs(y(l)-y1(l)))^2; 
 
   sum=sum+Z(l); 
 
   sum1=sum1+(y1(l)^2); 
 
   z(l)=abs(y(l)-y1(l)); 
 
end 
 
L2=sqrt(sum)/sqrt(sum1) 
 
Linf=max(z) 
 
plot(x,z,'rp-') 
 
hold on 
 
title(['Numerical Experiment No.1'],'Fontsize',20) 
 
xlabel(['t'], 'Fontsize',20); 
 
ylabel(['y_{''Exact''}(t) --  y_{''Approximated''}(t)'], 'Fontsize',20);  
 
where h represents the Haar function, R integral of Haar function, S is the integral of Haar function at t=1. 

 
 
 
 
 
 

 


